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Renormalization Tree: embedded case study
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Renormalization schemes

Univer sal UV decomposition: |

One-loop integrals

Any one-loop integral f1 can be decomposed as

1
) = Y k) Fx),

k=—1

where {I} = external kinematical variables, masses of internal
particles. x is some kinematical variable and the dependence
on the dimensional regulator ¢ is entirely transferred to the
universal UV factors,

1 1 1
FL(X) = == 3 M) + 5 A%, (0 &

€

1
Fa(x) = 1—§Auv(x)e, Fi(x) =€
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Renormalization schemes

Univer sal UV decomposition: |l

One-loop integrals

Because of overlapping divergencies we include O (¢) terms in
all one-loop results.

M? M2
AUV == "y + In7T + In ?, Auv(x) — AUV - In 7,
— 2F1;(M?)
m
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Renormalization schemes

Univer sal UV decomposition: |l

Two-loop integrals

A generic two-loop integral f2 can be written as

0
P2y = > P21} k) RX).

k=—2

Here the two-loop UV factors read as follows:

1 Aw(x) 1

2 . uv 2

F—Z(X) - 6_27 e +§AUV(X)’
1

F2,(x) = Z—Auv(x), Fé(x) =1.

Note that the product of two one-loop integrals can be written %
through the same UV decomposition of a two-loop integral.
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Renormalization schemes

Univer sal UV decomposition: |V

Vo (---1-2) = -2,
Vo (P2, P, {m}1234; —1) —2bo(1,1,p1,{m}34; 0) — 1.

e

\é
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Renormalization schemes

Univer sal UV decomposition: |V

Vo (---1-2) = -2,
Vo (P2, P, {m}123a; —1) = —2bo(1,1,p1,{m}3s; 0) —1.
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Renormalization constants

Multiplicative

c.t. not needed but useful —————@——

masses, parameters

m = Zé\/z

P = Zppr, P=0,Cq,Sg

Mg,

renormalization

Fields, gauge parameters

; - % \" 5zm
9V = 16 72 1 IV4
— 1/2 LR _ 51/2 LR
¢ R Y “/‘L R YR

A — 1/2,_\# +Zl/22u

n
/2 _ (n)
2 - 5 () g

n=1

FP ghost fields are not renormalized
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Renormalization constants
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Renormalization constants

MS and beyond |

NMS scheme: advancing renormalization theory

In the spirit of the UV decomposition we define a non-minimal
(NMS) subtraction scheme where

1loop — 6z =naz®MF1, (M),

2 loops — 2P = Z AZR) F(M2),

@
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Renormalization constants

MS and beyond Il

c.t. are fixed in order to remove order-by-order the poles at
e = 0 for any Green function

Property of NMS

The product of a one-loop c.t. with a one-loop diagram (i.e., a
one-loop c.t. insertion) has the same UV decomposition of a
two-loop function thus simplifying two-loop renormalized Green
functions

The NMS scheme has the virtue of respecting the universal UV %
decomposition

>
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Renormalization constants

The two facets of renormalization

promote bare quantities p to
renormalized ones pg
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Renormalization constants

The two facets of renormalization

promote bare quantities p to
renormalized ones pg

Step 2
@ fixthect. atlL =to
remove the UV poles

from all 1L GF;

@ check that 2L GF
develop local UV :
residues; é

@ fix the 2L c.t. to remove
2L local UV poles.
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Renormalization constants

The two facets of renormalization

promote bare quantities p to
renormalized ones pg

Step 2
@ fixthect. atlL =to
remove the UV poles

from all 1L GF;

@ check that 2L GF
develop local UV
residues;

@ fix the 2L c.t. to remove
2L local UV poles.

Finite renomalization

the absorption of UV poles
into local c.t. does not
exhaust the procedure; we
have to connect py to POs,
thus making the theory
predictive.
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Consistency checks

WST identities

W
NN —(n)iipzy/ Pzt

p H
® 4 x151/251/2
o - « (2m)*i MZ,"7Z," " Ze,,
p

Figure: Sources related to the gauge-fixing functions C*
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Consistency checks

WST identities

w w w ® ® w ® ®
MN\‘V\/W +¢/w\‘---o +o--‘\/vw + o--‘---o ~0
Figure: Doubly-contracted WST identity with two external C* sources

°
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Consistency checks

Summary

SU(3) ® SU(2) ® U(1)
We have been able to verify that the SM can be made
(two-loop) UV finite by adding local c.t.

| A\

Generalization of 1L

The well-known one-loop result that self-energies suffice in
performing renormalization can be extended up to two loops.

L
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Consistency checks

Overlapping diver gencies
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Consistency checks

Overlapping diver gencies

Figure: The arbitrary two-loop diagram G**” and one of the
associated subtraction sub-diagrams. Only in the sum we have
cancellation of non-local residues é
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Consistency checks

Example: «

Renormalizing g sy

In extracting « from Thomson scattering at zero momentum
transfer we find four classes of two-loop diagrams:
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Consistency checks

Example: «

Renormalizing g sy

In extracting « from Thomson scattering at zero momentum
transfer we find four classes of two-loop diagrams:

(, )

© irreducible two-loop vertices and wave-function factors,
product of one-loop corrected vertices with one-loop
wave-function factors;
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Consistency checks

Example: «

Renormalizing g sy

In extracting « from Thomson scattering at zero momentum
transfer we find four classes of two-loop diagrams:

(1,2,3,4)

@ irreducible two-loop vertices and wave-function factors,
product of one-loop corrected vertices with one-loop
wave-function factors;

@ one-loop vacuum polarization @ one-loop vertices or
one-loop wave-function factors; %
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Consistency checks

Example: «

Renormalizing g sy

In extracting « from Thomson scattering at zero momentum
transfer we find four classes of two-loop diagrams:

@ irreducible two-loop vertices and wave-function factors,
product of one-loop corrected vertices with one-loop
wave-function factors;

© one-loop vacuum polarization ® one-loop vertices or
one-loop wave-function factors;

© irreducible two-loop AA, AZ , A¢? transitions;
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Consistency checks

Example: «

Renormalizing g sy

In extracting « from Thomson scattering at zero momentum
transfer we find four classes of two-loop diagrams:

@ irreducible two-loop vertices and wave-function factors,
product of one-loop corrected vertices with one-loop
wave-function factors;

© one-loop vacuum polarization ® one-loop vertices or
one-loop wave-function factors;

@ irreducible two-loop AA, AZ , A¢? transitions; %
© reducible two-loop AA, AZ , A¢° transitions.
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Consistency checks

Consistenc y

A matter of life -- - )

You can’t prove something by assuming it's true

We have verified that the non-vanishing contribution originates
from 11l and IV only and, within these terms, only the reducible
and irreducible AA transition survives.

Bluntl y:

We have proven that the SM it's only slightly more complex

than QED. %
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Consistency checks

Example: G:

Renormalizing g, M

In extracting the Fermi coupling constant from the muon lifetime
all corrections to

>

G 2
7 = syz(1t49)

which do not originate from the W self-energy and that are UV
(and IR) finite at one loop remain finite at two loops after
one-loop renormalization (i.e. two-loop counterterms are not %
needed)
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Consistency checks

A sample of MS counter terms: |

an MS example

A7
ZANE (% - Auv) ( - +Azif§)> + A2 AZ{D.

4

Higgs field renormalization

431 5% 371 7 9 g2
Az@ gy 2 2R 20 L P24 oAy 2S
H;1 + 4Cg 4C€2 zcg 2t 4t+ tgza
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Consistency checks

A sample of MS counter terms: |I

Higgs field renormalization

7 4311 8x 1011 25
Az@ L9t 2 99A& VAL &9
"2 T 5 96ci 48cZ 122 24"
27, 3 g2
+ Extz — ﬁxﬁ — 10xtg—2,
@) 431 5x 371 7 9 , g2
Az2, = a4 O X S0- ] _2 9
i3 Tleci T16c2 Bz 8t 167 T ONp %
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Consistency checks

v° in a nutshell

HVBM scheme

The HVBM scheme breaks all WST identities (so-called
spurious or avoidable violations) which can be restored
afterwards by introducing suitable ultraviolet finite counterterms.
The procedure, however is lengthy and cumbersome.




The Tree
00000000 0e

Consistency checks

v° in a nutshell

HVBM scheme

The HVBM scheme breaks all WST identities (so-called
spurious or avoidable violations) which can be restored
afterwards by introducing suitable ultraviolet finite counterterms.
The procedure, however is lengthy and cumbersome.

pseudo-regularization of chiral theories

After considerable wrangling one is lead to the conclusion that
the only sensible solution is the one proposed by Jegerlehner:
n-dimensional y-algebra with strictly anti-commuting ~°

together with 4-dimensional treatment of the hard anomalies. %
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Towards comple x poles

About gauge independence |

Problem
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Towards comple x poles

About gauge independence |

o0

Tw(s.€) = S xl)(s.6) g™

n=1

On mass shell

(s, €) = =), (s)
SR M3)¢VV(Saf)
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Towards comple x poles

About gauge independence |

Nielsen identity
() 2n 0 —0

Tw(s.€) = D Tw(s.€)g o vv(Se,€) =
n=1

Sp — M3 + ZVV(SP) = 0

On mass shell

(s, €) = =), (s)
SR M3)¢VV(Saf)
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Towards comple x poles

About gauge independence |

zVV(S7 5) = Z z\(/r\]/)(S 5) 92n
n=1

On mass shell

(s, €) = =), (s)
SR M3)¢VV(Saf)

Nielsen identity

0
8_5 Tuv(se,€) =0

Sp — M3 + ZVV(SP) = 0

Decomposition

sW(s,&) =W (s)
+ = (s,€)

VvV ;€
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Towards comple x poles

About gauge independence I

(n) _ y(-1)
Yoy e(Se8) = Xy (Se) Puv(se,€),

As a result we can prove that all £&-dependent parts cancel,

Zvv(SP) = \(/r\1/) | QZn

However, this example shows how an all-order relation should
be carefully interpreted while working at some fixed order.

A\
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Finite Renormalization

Renormalization equations

One of our renormalization equations will always be of the type

2
SV — M3 - %ZV\/(S\/,M\%). %
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Finite Renormalization

Options
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Finite Renormalization

Options

)
@ AtO(g*) in Z,, we keep p? = —s, with O (g®) violation;




The Tree

Finite Renormalization

Options

» 3,)
Q AtO (g*) in Z,, we keep p? = —s, with O (g°) violation;
© we replace ¥, with &, .,

v@ (sv) = T®(sy,1) = =W (sy) Duy(sy, 1)
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Finite Renormalization

Options

Q AtO (g*) in Z,, we keep p? = —s, with O (g°) violation;
@ we replace ¥, with &, .,

v@ (s0) = T®(sy,1) = =W (sy) Dy (sy, 1)

@ we expand,

g2

16 72
02 \* [-@ 2 2
— (16 7(_2) |:ZVV (MV1 MV)

M2, M) =), (M2, M2)

1
sv = M2- (M2, M2)
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Finite Renormalization

Finite renormalization in running couplings

(intermediate) renormaliz ed theory
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Finite Renormalization

Finite renormalization in running couplings

(intermediate) renormaliz ed theory
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Comple x poles

Dressed propagator s

From finite order
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Comple x poles

Dressed propagator s

From finite order
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Comple x poles

Properties: |

all orders

We assume that a dressed propagator obeys Kallen - Lehmann
representation; using the relation

ImA(p?) = Im):{(p2+m2—ReZ)2+(lmZ)2rl

= 7Tp(— pZ)’

Kéallen - Lehmann

the Kallen - Lehmann representation follows:

—~ I p(s)
A(p?) _/O dsm. %
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Comple x poles

Properties: I

Figure: Cutting equation for a dressed propagator; the red circle is
the (all-orders) cut self-energy.



Figure 1: Schwinger-Dyson equation for any p
oval is the SD self-energy: solid lines represent (\Vn.hout further
standard model

— @

sible (standard model) dressed plnpﬁga!(n (vellow box); the red
isti of the fields of the

"



- -

Figure 1: Schwinger Dyson equation for the self energy (Lh.s). In the r.h.s. the red oval is the SD vertex and the
vellow box is the dressed propagator; solid lines represent (without further distinction) any of the permissible fields
of the standard model.



Figure 1: Schwinger-Dyson equation for a dressed vertex (Lh.s); in the rhs we have SD three and four-point
vertices (red ovals) and dressed propagators (vellow boxes); solid lines represent (without further distinction) any of
the fields of the standard model and vertices must be understood as any of the permissible standard model ver
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Comple x poles

Unitarity

all orders

@ Unitarity follows if we add all possible ways in which a
diagram with given topology can be cut in two.

~

@ We express ImX in terms of cut self-energy diagrams and
repeat the procedure ad libidum, therefore proving that %
unstable particles contribute to the unitarity of the
S—matrix only via their stable decay products.
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Comple x poles

Unitarity

@ Unitarity follows if we add all possible ways in which a
diagram with given topology can be cut in two.
@ The shaded line separates S from Sf.

~

@ We express ImX in terms of cut self-energy diagrams and
repeat the procedure ad libidum, therefore proving that %
unstable particles contribute to the unitarity of the
S—matrix only via their stable decay products.
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Comple x poles

Unitarity

@ Unitarity follows if we add all possible ways in which a
diagram with given topology can be cut in two.

@ The shaded line separates S from S,

@ For a stable particle the cut line, proportional to Z+,
contains a pole term 2i 7 6(po) 6(p? + m?),

~

@ We express ImX in terms of cut self-energy diagrams and
repeat the procedure ad libidum, therefore proving that %
unstable particles contribute to the unitarity of the
S—matrix only via their stable decay products.
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Comple x poles

Unitarity

@ Unitarity follows if we add all possible ways in which a
diagram with given topology can be cut in two.

@ The shaded line separates S from S,

@ For a stable particle the cut line, proportional to At
contains a pole term 2i 7 0(pg) 6(p? + m?),

@ whereas there is no such contribution for an unstable
particle.

~

@ We express ImX in terms of cut self-energy diagrams and
repeat the procedure ad libidum, therefore proving that %
unstable particles contribute to the unitarity of the
S—matrix only via their stable decay products.
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Comple x poles

WSTI

WSTI with dressed propagator s/ver tices

@ We assume that WST identities hold at any fixed order in
perturbation theory for diagrams that contain bare
propagators and vertices;
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Comple x poles

WSTI

WSTI with dressed propagator s/ver tices

@ We assume that WST identities hold at any fixed order in
perturbation theory for diagrams that contain bare
propagators and vertices;

@ they again form dressed propagators and vertices when
summed.

but

Any arbitrary truncation that preferentially resums specific
topologies will lead to violations of WST identities. %
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Comple x poles

Finite renormalization with unstab le particles

Give up unitarity (a quizzical approach) |




The Tree
000000

Comple x poles

Finite renormalization with unstab le particles

Give up unitarity (a quizzical approach) |

m? = sm+X(sm);

At one loop
m? — s, everywhere;
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Comple x poles

Finite renormalization with unstab le particles

Give up unitarity (a quizzical approach) |

m? = sm+X(sm);

At one loop
m? — s, everywhere;

At two loops

@ 2L no X insertions:
m2 = sp;
@ 1L: m? =sy + X(sm)
and the factor
X(s) —X(sm)
S — Sm

9

expanded to first order;
@ vertices: m?2 = s, in 2L,
m? = sm + X(sm) in 1L
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Higgs decay: explorator y case study




Two-loop H decays

H — vy and WSTI

thick dot represents an unphysical, off-shell photon source, the

Figure: Simply-contracted off-shell Ward identity for H — »~. The é
dotted-arrow-line is a FP ghost.



Two-loop H decays

H — ~~: a practical application for nonsense

LSZ treatment H

alternative therapy:  at sy



Two-loop H decays

Interlude: QCD corrections

M, | Our Result | Harlander(anal.) | Degrassi(r®) | Tarasov(r®)
100 | —3.8682(7) | —3.8687 —3.8688 —3.8687
110 | —4.5947(6) | —4.5953 —4.5955 —4.5953
120 | —5.3535(6) | —5.3540 —5.3543 —5.3540
130 | —6.1323(6) | —6.1329 —6.1336 —6.1329
140 | —6.9175(6) | —6.9180 —6.9196 —6.9180
150 | —7.6928(6) | —7.6932 —7.6964 —7.6932

with 7 = M2/(4m2)




Two-loop H decays

Calibration: H — gg light quarks

M,, | Our (numerical) | Degrassi et al
115 | 5.31(5) 5.28
120 | 5.55(4) 5.62
125 | 5.97(4) 5.98
130 | 6.44(6) 6.36
135 | 6.74(3) 6.76
140 | 7.12(4) 7.20
145 | 7.73(4) 7.69
150 | 8.25(4) 8.26

Numerical - mass regulated vs. harmonic polylogarithms - %
dimensionally regulated for one generation. J



Two-loop H decays

Problems: WST

(Unstab le) external H

@ Based on validity of WSTI one form factor suffices in
describing the amplitude;

WSTI = ReF (M,,M,, ; 1LLSZ,0S,FR) —F (M,,,M,, ; 2L)
= 0, below threshold,
# 0, above threshold

Remove the Retag, F known in analytical form J%




Two-loop H decays

Problems: WST

(Unstab le) external H

@ Based on validity of WSTI one form factor suffices in
describing the amplitude;

@ but at two-loops the WSTI is:

WSTI = ReF (M,,M,, ; 1LLSZ,0S,FR) —F (M,,,M,, ; 2L)
= 0, below threshold,
# 0, above threshold

Remove the Retag, F known in analytical form J%



Two-loop H decays

Problems: thresholds

(Unstab le) internal W

@ From both H LSZ - wave function renormalization and pure
two-loop diagrams it emerges an unphysical singularity:

2

M M
MH =) = ZE+Mp, G =1-43y
w H

@ Remove the Retag as before,



Two-loop H decays

Problems: thresholds

(Unstab le) internal W

@ From both H LSZ - wave function renormalization and pure
two-loop diagrams it emerges an unphysical singularity:

2

M M
MH =) = ZE+Mp, G =1-43y
w H

@ Remove the Retag as before,

@ prove WSTI for Mg and M; separately (analytical extraction
of Mg from pure two-loops), %



Two-loop H decays

Problems: thresholds

(Unstab le) internal W

@ From both H LSZ - wave function renormalization and pure
two-loop diagrams it emerges an unphysical singularity:

M 2
MH =) = ZE+Mp, G =1-43y
w H

@ Remove the Retag as before,

@ prove WSTI for Mg and M; separately (analytical extraction
of Mg from pure two-loops), %

@ replace M\f, with s, everywhere in Mg /5y,



Two-loop H decays

Around the WW threshold




Two-loop H decays

Around the WW threshold

e

—.
m contractions

"N

°

Figure: Contraction of a V™ configuration leading to a 3~ behavior
at the normal m threshold.



Two-loop H decays

I\/I\Azl — Sy

= M, =2M




Two-loop H decays

I\/I\Azl — Sy




Two-loop H decays

I\/I\Azl — Sy

= M, =2M

H w

Figure: V{§' around the M, = 2M,, threshold; black(red) dots give the é
real part with real (complex) masses. Yellow(blue) dots give the
imaginary part with real (complex) masses.



Two-loop H decays

H — ~~: technical details




Two-loop H decays

H — ~~: technical details

v~

VE

0
Figure: The collinear-divergent two-loop vertex diagrams VE. é



Two-loop H decays

H — ~~: collinear configurations

integrals of one-loop functions

B! (Pz,piz, {m}) = /l dx Bn(Xi, {m}),
0

Xi = (1-x)P%®+xp?
Anal ytical extraction of coll. logs
2

L
VG (0,p5,P% {M},{m}) = —7”‘ +1B§(P%, p3. {M}) Lm
+ c.f. %




Two-loop H decays

H — ~~: EW corrections

%
=

in

-2.5

-3.5

4 | ON

80 100 120 140 60

nh (GeV) ' é

terra incognita, ready for numerical explorations )

el ectroweak corr.
w




Two-loop H decays

H — ~~: EW corrections

w
ol

N
(&3]

2-1 oop anplitude
N w
(e) o

[N
ol

80 100 120 140 60

th (GeV) | é

Hercules columns J




Two-loop H decays

H — ~~: comple x-masses

/

M, [GeV] |



Two-loop H decays

H — ~~: comple x-masses

M, [GeV] | with M2 [%]
-0.87(1)
—0.95(1)
—5.23(1)
~8.90(4)
—9.85(8)
—10.97(4)
—12.37(4)
—14.38(8)
~17.26(4)
—22.22(6)
—33.69(6)



Two-loop H decays

H — ~~: comple x-masses

M, [GeV] | with M2 [%] with sy, (%)
150 ~0.87(1)  —0.81(1)
155 _0.95(1)  —0.71(2)
160 ~523(1)  +0.35(1)
160.4 ~8.90(4)  +1.24(1)
160.45 ~9.85(8)  +1.20(1)
160.5 ~10.97(4)  +1.50(1)
160.55 | ~12.37(4) +1.75(1)
160.6 ~14.38(8)  +1.95(1)
160.65 | ~17.26(4) +2.27(1)
160.7 _22.22(6)  +2.67(1) %
160.75 | —33.69(6) +3.20(2)



Two-loop H decays
[ ]

Citations and Conclusions

C&C

won't win memanyfriends. . .

Alwall ... Willenbrock in a stroke




Two-loop H decays
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Citations and Conclusions

C&C

won't win memanyfriends. . .

Alwall ... Willenbrock in a stroke

All toolsfor a two-loopcalculationin the SMhavebeen
assembledh one stand-alonecode

Numbes for (pseudo)bservablesire poppingup... é
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